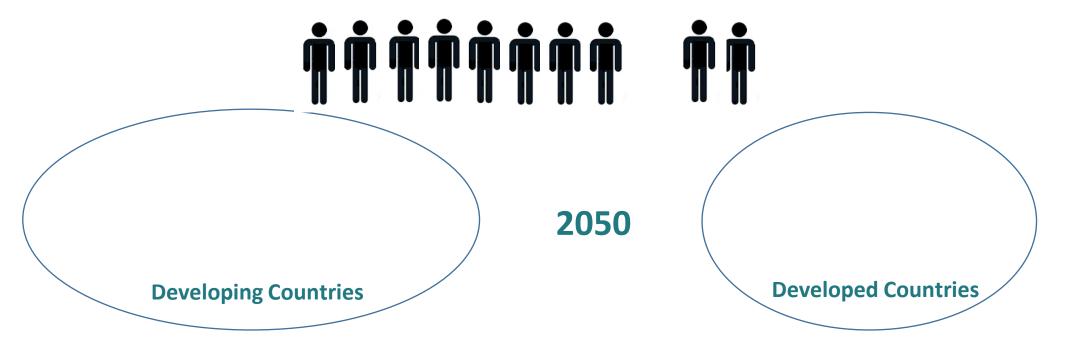


Mode Choice Model for the Elderly; Case of Mashhad

AmirReza Mamdoohi (Assist. Professor)
Fatemeh Naqavi (M.Sc. Graduate)


Contents

- Introduction
- Purpose
- Literature Review
- Questionnaire Design & Data Collection
- Data Characteristics
- Methodology & Model
- Conclusions

Introduction

Developing countries have a great share of the elderly population increase.

Purpose

policy makers need to realize elderly travel characteristics and behavior.

understand how the elderly travel in Iran,

this paper focuses on Mashhad elderly,

applies Multinomial Logit Model for travel mode choice,

socio-economic & trip characteristics.

	Area of Study	Purpose of Study	Modelling Technique
	London 2011	mode choice among older & disabled in London, what policies best meet their mobility and activity needs.	Nested logit model
> U	The Netherlands 2011	trip-making for social purposes, special focus on demographic ageing factors.	Mixed logit model
	Ibadan, Nigerian 2009	Assessing the travel characteristic and mobility crisis of the elderly in Ibadan Metropolis.	Descriptive statistics
	Chungchun, China 2013	elderly people travel behavior in Changchun, China (trip frequency per day, trip purpose & mode choice).	Descriptive statistics

Review

	Area of Study	Purpose of Study	Modelling Technique
10	Virginia 1991	factors affecting demand for types of transportation by elderly & disabled people in rural Virginia.	Multinomial logit Poisson regression
<u> </u>	Canada 2011	factors affecting mode choice & travel distance of older people along with interrelationship between these two.	Utility-theoretic demand
	Taiwan 2001	factors that affect elderly mode choice behavior in Taiwan.	Multinomial logit model
	America 2001	travel patterns of older in US as depicted in 2001 (NHTS).	Descriptive statistics

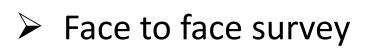
Questionnaire

A questionnaire mainly based on LATS (London Area Travel Survey) was developed and localized, in December 2015.

First Section

Trip information

Mode of travel Trip purpose Frequency of travel Number & relation of people along with respondents


Second Section

Personal information

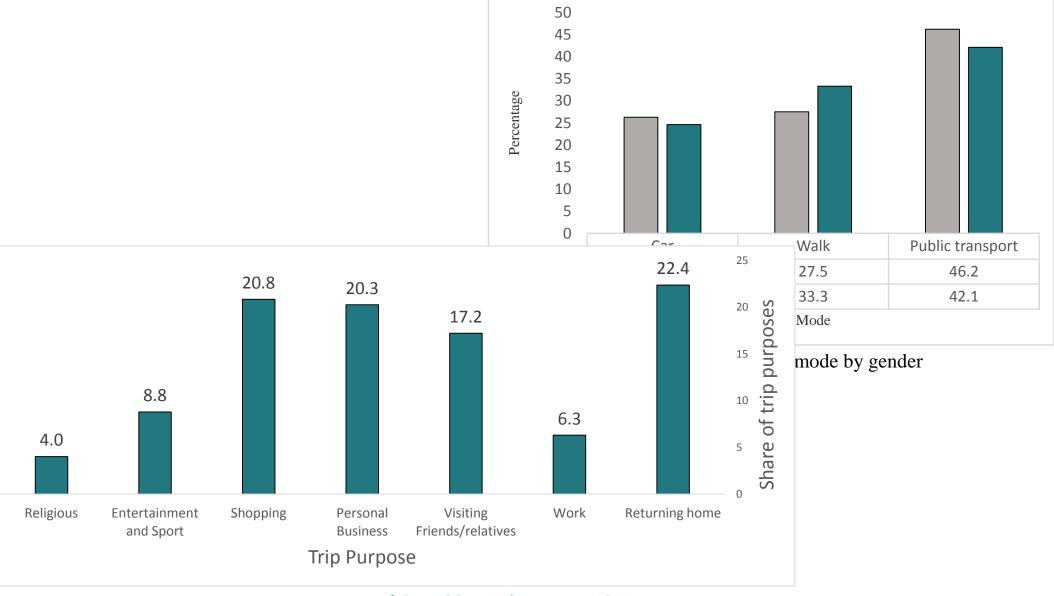
Age Gender Work status Personal & household characteristics Car-ownership **Educational attainment**

Third Section

individual perceptions on environment, safety, comfort, convenience & flexibility of mode of travel

> 524 respondent on February 2016

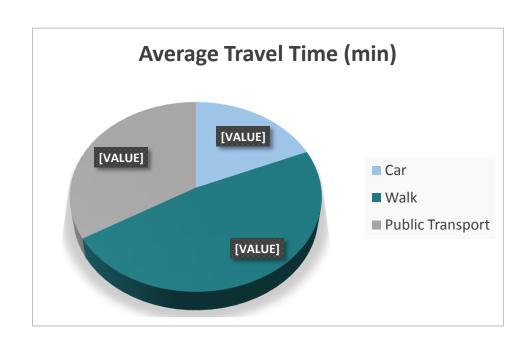
- Final number of records used modeling _____ 499 records
- Excluding bike & motorcycle (little share).

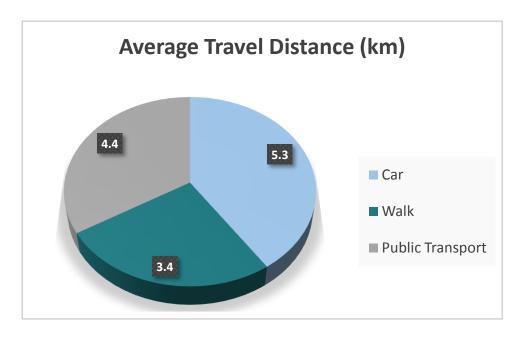


Real Corp 2017 Vienna 14 Sept.

Variable	Average	Standard deviation	Lowest value	Highest value
Age	64.6	5.0	60	105
Household size	2.4	1.0	1	7
Monthly expenses	1.7	0.9	1	5
HH Car ownership	0.6	0.7	0	3
License ownership	1.5	0.5	1	2

Frequency distribution of some variables of the model




	Car	Walk	Public Transport
Women	11.7	13.7	19.0
Men	7.1	7.9	12.3

Percentage of the elderly with someone along during travel

		Car		Walk		Public Transport	
Age	60-64	78	25%	98	32%	134	43%
7.80	65-69	30	26%	31	27%	54	47%
	+70	20	27%	25	34%	29	39%

Percentage of elderly by mode & age

Discrete choice models derived from the assumption of utility

maximization of decision makers' behavior.

Option: n Individual: i

$$U_{ni} = V_{ni} + \varepsilon_{ni}$$

$$P_{ni} = \frac{e^{V_{ni}}}{\sum_{j} e^{V_{ni}}}$$

Mode of travel	Variable	Parameter	P-Value			
	Constant	-0.79301	0.0029			
Car	Gender	0.92433	0.0016			
	No License * gender 1	0.45739	0.0147			
	Education1	-0.29789	0.0055			
	License	-0.33688	0.0174			
	Monthly expense	0.08477	0.0190			
Walk	Travel distance	-0.02726	0.0012			
van	License	0.88280	0.0826			
	Trip frequency 2	-0.28142	0.0109			
	Education 1	0.17570	0.0187			
Public transport	#along * Purpose 3	-0.65208	0.0143			
	Gender 1 * gender * purpose 3* HH 1	0.77451	0.0539			
	Walking time to the nearest bus station	-0.51328	0.0246			
Number of observations	499					
Log-likelihood (no coefficient)	-534.6508					
Log-likelihood (0)	-548.2075					
Log-likelihood (C)	-489.2842					
R-squared	0.0849					
R-squared adjusted	0.1075					

MNL model for Mashhad elderly mode of travel

Real Corp 2017 Vienna 14 Sept.

Public Transport

- \triangleright Older people make most of their trips by public transport (similar to of Hu et al 2013).
- Women accompanied by another woman (purpose of visiting friends or relatives and live alone) tend to use public transport rather than car (this group statistically significant).

➤ High trip frequency (2-4 times a week) has a negative influence on using public transport.

Private Car

Conclusion

- men prefer to drive more than women, while women prefer to be car passengers (confirms Netherlands- Van den Berg & Timmermans 2011), London (Schmöcker et al., 2008) and Taiwan (Chang & Wu, 2005).
- > Elderly with higher than primary education tend to use car more.
- > Car users are mostly women (majority of this group don't have driving license 81%)

- > As monthly household expenses increase, elderly are more likely to choose car.
- > As income level increases, elderly prefer to use car more (similar to Schmöcker et al. 2008).
- > Driving license has positive impact on private car.

Walking

Conclusion

- > travel distance has a negative sign (as distance increases, less likely for elderly to walk).
- > men walk more than women (they mostly have driving license).
- > as walking distance to nearest bus station increases, more likely to use public transport (asked from the elderly and not calculated exactly).

Thank You!

Questions?